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Received 4 June 1979, in final form 22 October 1979 

Abstract. It is proven by Peierls' argument in connection with reflection positivity that the 
lattice gas on the FCC lattice with nearest-neighbour repulsion (with interaction energy a )  
exists in an ordered state at low enough temperature provided the chemical potential, p, 
satisfies 0 < p < 4a, 4a < p < 8 a  or 8a < < 12a. This result immediately carries over to 
the antiferromagnetic king model and the lattice gas with nearest-neighbour exclusion on 
the FCC lattice, both of which will also exist in an ordered state under suitable circum- 
stances. In particular, the existence of a phase transition at zero magnetic field is confirmed. 

1. Introduction 

It has earlier been proven that the lattice gas with nearest-neighbour repulsion on the 
simple cubic lattice (Dobrushin 1968), the body-centred cubic lattice (which follows by 
a trivial modification of the proof for the simple cubic lattice) and the diamond lattice 
(Heilmann 1974) exhibits a phase transition from an ordered to a disordered state. In 
all three cases the result follows from an application of Peierls' argument in the form 
originally introduced by Griffith (1964) and Dobrushin (1965). However, the nature of 
the ordered phase for the face-centred cubic lattice is more complicated, and one has to 
resort to contours which are made up of line segments (rather than surface segments) in 
spite of the three-dimensional nature of the problem. This problem has recently been 
solved by Abraham and Heilmann (1980) (to be referred to as AH) by application of 
reflection positivity (see Heilmann and Lieb (1979) (to be referred to as HL) and 
references therein). The present argument follows the argument of A H  closely and :he 
reader is referred to that paper for most of the details. 

The antiferromagnetic Ising model with zero magnetic field had earlier been the 
subject of several articles. Danelian (1961) established the existence and nature of the 
partially ordered ground state. The existence of a phase transition from an antifer- 
romagnetic to a disordered state was indicated by series expansions (Danelian 1961, 
Betts and Elliott 1969); a result which has recently been supported by Monte Carlo 
calculations (Phani et a1 1979). Little seems to have been published about the 
behaviour at non-zero magnetic field (see, however, figure 5 in Domb (1974)). 

In the following we shall adhere to the notation of the lattice gas and only give the 
results for the Ising model at the end. 
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2. The model 

We introduce a coordinate system such that the vertices of the FCC lattice coincide with 
the points with integer coordinates with even sum. The domain, A, is a box-shaped 
subset of size 2N x 2M x 2L: 

A = { ( x , p , ~ ) : x - O , l  , . . . ,  2 N - 1 , ~ = 0 , 1 ,  . . . ,  2 M - I ,  

z = 0 ,  I , .  . . , 2 L - l , x + y + z  even} 

with cyclic boundary conditions i.e. x coordinates are calculated modulo 2N onto 
0 s x < 2N, y coordinates modulo 2M onto 0 s p < 2M and z coordinates modulo 2L 
onto 0 s z < 2 L  whenever necessary. 

If we attach a copy of the two point space (0, I }  to each vertex in A, then we can 
identify the set of all possible configurations of the repulsive lattice gas on A, W, with 
{O, l }  , letting 1 correspond to an occupied vertex and 0 to an empty vertex. The set 
of all possible arrangements of particles on &A which are consistent with the requirement 
of nearest-neighbour exclusion is denoted by 9 ; 9 is a subset of % which we describe by 
introducing a characteristic function, x, defined for all 5 E % by 

4NML 

Iff is a function defined on 9, then we extend the function xf to a function on %, just as 
in AH, by (6 f W) 

We shall call % the phase space for A for both lattice gases. 

3. Reflection positivity 

We take the reflection planes to be perpendicular to one of the coordinate axes and 
passing through the vertices. More specifically, the reflection planes perpendicular to 
the x axis are given by ( j  i s  an integer satisfying 0 s j < N )  

L-j L- { ( j ,  y ,  2): y E R, 2 E R} 

L + ~  = {( j + N ,  y ,  z ) :  y E R, z E R}. 
(3) 

The phase space, %, is partitioned into the phase space for L c  U LT,  %Oj,  the phase 
space for the vertices of h satisfying j < x  < j +  N, Vbj,  and the phase space for the 
vertices satisfying either x < j or x > j +N, % - j ,  i.e. Y o j  = (0 ,  1}2ML, Vkj = {0, 1}‘2”-1’ML, 
and @ - j  = (0, 1} ‘2N-1)ML . A point 6 E % can be written as an ordered triplet, 6 = 
(t-i, toj, 6’ j )  with tij E Vii. By F + j  we denote the functions on % which are independent 
of‘ t-j and by F--j  we denote the functions on % which are independent of [ + j .  A 
function on % which depends only on f o j  is in both F + j  and Fj.  

The involution, e,, of A onto A is defined as the reflection 

O j :  (x, y, z ) +  (2j- t  1 -x,  y, z ) .  (4) 
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0, lifts to an involution of % onto % (which again is denoted by O f ) ;  5 = ( f - j ,  [ " j ,  5" j )  E (6': 

Finally, $, is used for the involution on functions on % defined, with a slight abuse of 
notation, by 

Ojf(5) = ejf(t-j,  t o j ,  t'j) = f ( t + j ,  Pi, 5-i)- ( 6 )  

Obviously 
$.F + . = F -  . 

1 1  I '  ( 7 )  

We are now ready to state the conditions which imply that the models have reflection 
positivity. Let 6 E %; then we write v(5) for the number of occupied vertices in 8 and 
q (5)  for the number pairs of nearest-neighbour vertices both of which are occupied in 5. 
'The Hamiltonian H ( 6 )  for the lattice gas with nearest-neighbour repulsion can then be 
written as 

The grand canonical partition function is given by 

zr= c .XP(-Pf{(S)) 
E E Q  

for the repulsive lattice gas and by 

(9) 

for the lattice gas with nearest-neighbour exclusion. The Hamiltonians, H ( 5 )  and 
-pv((), clearly can be written 

where h-?(e) E F and v+([) E F+,. We also have the factorisation 

x ( 5 )  = X ~ ( 6 ) [ @ , X + ( t ) I  (13) 

where ~'(5) E F', is the characteristic function on %", U %+, for the nearest-neighbour 
exclusion problem. 'The equations (1 1)-( 13) are sufficient to ensure reflection positivity 
(see HL). I f f  is a function on % then its expectation value ( f )  is given by 

or 

depending on the model. Reflection positivity implies that if f and g are complex- 
valued functions on % and f~ F+i and g E F-i, then (r is the complex conjugate off ): 

(T(@jf  1) 2 0 (16) 

I(fg)12 < f ( e i f ) )  (S(e jg)>* (17) 
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4. Peierls' argument for O<p<4a 

Definitions. In a given configuration 6 E %', an elementary tetrahedron (i.e. four vertices 
all of which are each other's nearest neighbours) is called a good tetrahedron if precisely 
one of the four vertices is occupied; otherwise it is called a bad tetrahedron. The 
midpoints of the elementary tetrahedrons form a simple cubic lattice with edge length 
one and vertices at the points in R3 with half-integer coordinates. In the following, 
when we refer to the sc lattice we shall mean this lattice. Again referring to a specific 
configuration, 6 E %', a vertex of the sc lattice is called bad if the corresponding 
tetrahedron is bad; an edge of the sc lattice is called bad if at least one of the two 
vertices on which it is incident is bad; similarly, bad squares and bad cubes are defined as 
elementary squares, respectively elementary cubes, of the sc lattice which contains a? 
least one bad vertex. Vertices, edges, elementary squares and elementary cubes which 
are not bad are called good, i.e. good edges, good squares and good cubes contain only 
good vertices. 

The crucial implication of reflection positivity is that bad cubes are unlikely. If r is 
an elementary cube of the sc lattice, for example identified by its midpoint (which is a 
point in Z'), then we define Q, as the function on '% which is one on configurations 
where the cube r is bad and zero on configurations where it is good. 

The following lemma is analogous to the lemma in 0 5 of HL and is proved the same 
way. 

Lemma. Let A be a non-empty collection of distinct elementary cubes and let IAi be the 
number of elements in A. If 0 < p < 4a for the lattice gas with nearest-neighbour 
repulsion, then 

where 
a = ( p  -max{O, 2 p  -4a})/64, 

For the nearest-neighbour excluPion equation (18) holds, with 

Proof. The elementary cubes of the sc lattice are divided into eight equivalence classes 
such that the midpoints of all the cubes of a class form a simple cubic lattice with lattice 
spacing 2. In that way each vertex of the sc lattice belongs to one cube from each 
equivalence class. If B is the set of all the cubes from one of the classes then it follows 
from reflection positivity by the 'checker board' estimate (see HL) that 

l / ' A  118'BI 

ma,( A # @  re.4 rI Q r )  .( r e B  I1 Or) . (21) 

Strictly speaking, the right-hand side should be maximised over the eight equivalence 
classes since they are not identical (except for translation) in the present case. However, 
the way the following estimate is made makes it immaterial which class is chosen. 

In the following we only refer explicitly to the nearest-neighbour repulsion, the case 
of nearest-neighbour exclusion following trivially. We have from equation (14) 
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Clearly 

A bound on the terms in the sum in equation (22) can be obtained as follows. A vertex 
in the FCC lattice belongs to eight elementary tetrahedra and an edge in the FCC lattice 
belongs to two tetrahedra. This implies that the Hamiltonian can be written as a sum of 
the energies of elementary tetrahedra if in the energy of a tetrahedron we include -p/S 
for each occupied vertex and a / 2  for each pair of occupied vertices, i.e. the energy of a 
tetrahedron with 0, 1 , 2 ,  3 and 4 occupied vertices is respectively 0, - p / 8 ,  ( - 2 ~  + 
4 a ) / 8 ,  (-3p + 1 2 a ) / 8  and ( - 4 ~  + 2 4 a ) / 8 .  If all the cubes in B are bad then each 
vertex of the sc lattice (each tetrahedron of the FCC lattice) belongs to precisely one bad 
cube; therefore, at least one-eighth of the tetrahedra (= NML tetrahedra) are bad 
and the energy of such a configuration is larger than -7pNML/8- 
NML max(0, (-2p + 4 a ) / 8 }  if 0 < p < 4a. The lemma then follows from the fact that 
the number of elements in %? is 24NML. 

Once the lemma has been established it follows from the arguments of 0 4 of AH 
that the structure of ‘really good cubes’ dominates provided 17.1 e-ocu < 1 ,  and the only 
remaining problem is the analysis of the structure of the configurations where the really 
good cubes dominate. 

5. The ordered state for OCpC4a 

The FCC lattice can be divided into four simple cubic lattices with the lattice spacing two, 
such that each elementary tetrahedron of the FCC lattice has one vertex from each 
sublattice. We shall number the four simple cubic lattices from one to four and 
characterise the good tetrahedron by the number of the lattice to which the occupied 
vertex belongs; a good vertex of the sc lattice (of tetrahedra midpoints) is characterised 
according to the tetrahedron. As in A H  we find that a good edge (of the sc lattice) is of 
type one (same structure at both vertices) or of type two (different structure at the two 
vertices); in the latter case the possibilities are limited by the fact that the two tetrahedra 
which correspond to the two vertices (of the sc lattice) have two vertices (of the FCC 

lattice) in common. For the good squares (of the sc lattice) we have (as in AH) that 
either all the edges are of type one or two parallel edges are of type two and the other 
two of type one (note that one vertex of the FCC lattice is common to all four tetrahedra 
of an elementary square of the sc lattice, four vertices are each common to two 
tetrahedra and the remaining four vertices of the four tetrahedra (each of which only 
belongs to one tetrahedron) all belong to the same sc sublattice). Finally, a good cube 
either has twelve edges of type one or four parallel edges of type two and eight edges of 
type one. 

This is precisely the same result as in AH; therefore, we can draw the same 
conclusion. Either all the edges of the really good cubes are of type one, which implies 
that all the good tetrahedra corresponding to the vertices of these cubes have the same 
structure, i.e. one of the four sc sublattices of the FCC lattice is occupied and the other 
three are empty (except for the occurrences of disorder which have a low probability), 
or one of the three coordinate axes is special (let us say the x axis) in the sense that the 
edges of the really good cubes which are perpendicular to the x axis must be of type one 
while the edges which are parallel to the x axis can be of type two; if one of these edges is 
of type two, then all the parallel edges of the really good cubes whose midpoints have 
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the same x coordinate must also be of type two; furthermore, it follows from the special 
structure of the present problem that the spacing between planes perpendicular to the x 
axis and passing through edge midpoints of edges of type two (when they belong to the 
really good cubes) must be an even integer. In this case in the ordered structure (which 
dominates the configurations) every second plane of the FCC lattice perpendicular to the 
x axis is totally empty, while the other planes have half of the vertices (all belonging to 
the same sc sublattice) occupied and the other half of the vertices are empty, i.e. two of 
the sc sublattices are totally empty while the other two have some vertices occupied, the 
occupied vertices of a given sublattice being in planes perpendicular to the x axis (or the 
y or the z axis). 

At absolute zero ( p  = CO) it follows from an entropy consideration that the state is 
one where two of the sc sublattices are empty and the other two partly occupied, the 
choice between the two occupied sublattices being a random choice for each plane 
common to the two sublattices (and perpendicular to a coordinate axis). However, as 
soon as the temperature is larger than zero we are faced with the same predicament as in 
AH; most likely, the occurrcnces of defects will single out a particular choice for the 
relative ordering between neighbouring occupied planes, but we can say nothing about 
what actually happens. 

6. The case 4 ~ C p C 8 a  

The essential change from the case 0 < p < 4a is that a good tetrahedron is now an 
elementary tetrahedron with precisely two occupied vertices, while all other configura- 
tions correspond to a bad tetrahedron. 

Instead of equation (23) we use 

Z ~ e x p t p N M L ( 2 p  -4a)l  (24) 

CY = ( 2 p  -4a -max{p, 3p - 12a))/64. ( 2 5 )  

The structure of the configurations where the really good cubes dominate has already 
been described by Danelian (1961); however, it might still be of value to obtain this 
result with the notation used in 9 5 ,  which is rather different from that of Danelian. The 
good tetrahedra are characterised according to which of the sublattices the two 
occupied vertices belong to (six possibilities). This is most conveniently done by 
pointing an arrow from the midpoint of the edge (of the tetrahedron) which connects the 
two empty vertices towards the midpoint of the edge which connects the two occupied 
vertices. These arrows will be parallel or antiparallel to one of the coordinate axes. 
Characterising a good vertex of the sc lattice (of tetrahedra midpoints) according to the 
tetrahedron, we find that a good edge (of the sc lattice) is of type one (parallel or 
antiparallel arrows at the two vertices) or of type two (perpendicular directions of the 
two arrows). 

As before, the fact that the two tetrahedra which correspond to the endpoints of an 
edge of the sc lattice have two vertices (of the FCC lattice) in common limits the 
possibilities for the good edges. If the two common vertices (of the FCC lattice) are 
either both occupied or both empty, then the arrows of the two tetrahedra are 
antiparallel and in the direction of the corresponding edge of the sc lattice, i.e. the edge 
is necessarily of type one. If only one of the two common vertices (of the FCC lattice) is 

and find that the lemma holds with a given by 



Existence of an ordered phase for the repulsive lattice gas 1809 

occupied, then both arrows must be perpendicular to the corresponding edge of the sc 
lattice and the edge can either be of type one or type two; if it is of type one, then the 
arrows have to be parallel. 

It is now easily seen that a good square (of the sc lattice) either has all four edges of 
type one or two parallel edges of type two and the other two of type one and the 
arguments of AH and 0 5 apply. In the order state we have one coordinate directions 
such that in each of the perpendicular planes of the FCC lattice we have perfect 
antiferromagnetic ordering of the corresponding square lattice, while we can say 
nothing about the relative ordering of planes separated by a distance two. 

7. The case 8aepee12a 

The normal symmetry between occupied and empty vertices in a lattice gas with pair 
interactions (Gallavotti eta1 1967) implies that if 8a  < p < 12a and the temperature is 
low enough, then we have an ordered state which is equivalent to the one described 
above for 0 < p < 4a except that the roles of occupied and empty vertices are inter- 
changed and 

(26) a = (3p .- 12a - max(2p - 4a, 4 p  - 24a})/64. 

8. The Ising model 

It follows from the equivalence between the lattice gas and the Ising model (Lee and 
Yang 1952) that for the antiferromagnetic Ising model on the FCC lattice with 
nearest-neighbour interaction J for parallel spins and -J for antiparallel spins and 
magnetic field M one will have an ordered state at low enough temperature if 
4 J  < /HI < 1 2 J  or IHlC 4J. The structure will be the same as for the lattice gas with the 
empty vertices playing the role of spin up and the occupied vertices playing the role of 
spin down. The value of a will be 

a = (-IH~+8J-max{-2H+12J, -43})/32 (27) 

for 4J < IHI < 12J  and 

a = (-/HI + 4 4 / 3 2  (28) 
for JH/ < 4J. 

We have thus established the existence of three different ordered phases for the 
antiferromagnetic Ising model (as well as for the repulsive lattice gas) on the FCC lattice. 
It should be noticed that for H = 14.4 which are the values which separate the different 
ordered phases at T = 0, one has a residual entropy. This can be seen as follows. The 
energy can, as stated above, be considered as the sum of contributions from the 
elementary tetrahedra. An elementary tetrahedron with three spins up and one down 
contributes -H/4, while a tetrahedron with two spins up and two spins down contri- 
butes -J. If H = 4 J  then the two contributions are equal and the lowest possible. 
Consequently, if we divide the FCC lattice into four sc lattices (with lattice spacing two) 
and fix the spins of two of the sc sublattices to be up while the third sc sublattice has all 
spins down, then each of the spins of the fourth sc sublattice may be chosen indepen- 
dently to be either up or down, and we will in any case have a configuration with the 
ground-state energy if H = 4J, i.e. the residual entropy per site is at least a In 2. 
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The most natural conjecture about the phase diagram therefore appears to be that 
the disordered phase extends all the way down to T = 0 for H = *4J and that the only 
possible phase transitions are between one of the ordered phases and the disordered 
phase. 
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